Adaptive Neural Fuzzy Inference System Models for Predicting the Shear Strength of Reinforced Concrete Deep Beams
نویسندگان
چکیده
Article history: Received: 27 June 2015 Accepted: 25 August 2015 A reinforced concrete member in which the total span or shear span is especially small in relation to its depth is called a deep beam. In this study, a new approach based on the Adaptive Neural Fuzzy Inference System (ANFIS) is used to predict the shear strength of reinforced concrete (RC) deep beams. A constitutive relationship was obtained correlating the ultimate load with seven mechanical and geometrical parameters. These parameters contain Web width, Effective depth, Shear span to depth ratio, Concrete compressive strength, Main reinforcement ratio, Horizontal shear reinforcement ratio and Vertical shear reinforcement ratio. The ANFIS model is developed based on 214 experimental database obtained from the literature. The data used in the present study, out of the total data, 80% was used for training the model and 20% for checking to validate the model. The results indicated that ANFIS is an effective method for predicting the shear strength of reinforced concrete (RC) deep beams and has better accuracy and simplicity compared to the empirical methods.
منابع مشابه
Adaptive Neural Fuzzy Inference System Models for Predicting the Shear Strength of Reinforced Concrete Deep Beams
A reinforced concrete member in which the total span or shear span is especially small in relation to its depth is called a deep beam. In this study, a new approach based on the Adaptive Neural Fuzzy Inference System (ANFIS) is used to predict the shear strength of reinforced concrete (RC) deep beams. A constitutive relationship was obtained correlating the ultimate load with seven mechanical a...
متن کاملPrediction of shear strength of reinforced concrete beams using adaptive neuro-fuzzy inference system and artificial neural network
Reinforced concrete beam; Shear strength; Artificial neural network; Adaptive neuro-fuzzy inference system; Iranian concrete institute code; American concrete institute code. Abstract In this paper, the Artificial Neural Network (ANN) and the Adaptive Neuro-Fuzzy Inference System (ANFIS) are used to predict the shear strength of Reinforced Concrete (RC) beams, and the models are compared with A...
متن کاملA COMPREHENSIVE STUDY ON THE CONCRETE COMPRESSIVE STRENGTH ESTIMATION USING ARTIFICIAL NEURAL NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
This research deals with the development and comparison of two data-driven models, i.e., Artificial Neural Network (ANN) and Adaptive Neuro-based Fuzzy Inference System (ANFIS) models for estimation of 28-day compressive strength of concrete for 160 different mix designs. These various mix designs are constructed based on seven different parameters, i.e., 3/4 mm sand, 3/8 mm sand, cement conten...
متن کاملEstimation of Punching Shear Capacity of Concrete Slabs Using Data Mining Techniques
Punching shear capacity is a key factor for governing the collapsed form of slabs. This fragile failure that occurs at the slab-column connection is called punching shear failure and has been of concern for the engineers. The most common practice in evaluating the punching strength of the concrete slabs is to use the empirical expressions available in different building design codes. The estima...
متن کاملStepwise Regression for shear capacity assessment of steel fiber reinforced concrete beams
The addition of steel fibers into concrete improves the postcracking tensile strength of hardened concrete and hence significantly enhances the shear strength of reinforced concrete reinforced concrete beams. However, developing an accurate model for predicting the shear strength of steel fiber reinforced concrete (SFRC) beams is a challenging task as there are several parameters such as the co...
متن کامل